• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Zhang, Qian (Zhang, Qian.) | Liu, Zheng (Liu, Zheng.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Membrane fouling is a widespread problem that restricts the stable operation of membrane bioreactor (MBR) in wastewater treatment process (WWTP). However, it is difficult to avoid the occurrence of membrane fouling due to the lack of effective early warning methods. To deal with this problem, an intelligent early warning method, using a knowledge-based fuzzy broad learning (K-FBL) algorithm, is proposed for membrane fouling in this paper. First, the existing knowledge is extracted from the humanistic category of membrane fouling in the form of fuzzy rules. Then, the existing knowledge of membrane fouling can be used to compensate for the shortage of data sets. Second, a K-FBL algorithm is designed to train the fuzzy subsystems with the existing knowledge. Then, the uncertainties of membrane fouling process can be degraded to improve the learning performance. Third, a K-FBL-based early warning method is designed to realize the precise classification and provide the operational suggestions for membrane fouling. Finally, the experiment results of a real plant are given to demonstrate the effectiveness of this proposed K-FBL-based early warning method.

关键词:

Early warning Membrane fouling Membrane bioreactor Knowledge-based fuzzy broad learning method Broad learning algorithm

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Qian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Zheng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Qian]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Zheng]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Jun-Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Han, Hong-Gui]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 10 ] [Zhang, Qian]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 11 ] [Liu, Zheng]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 12 ] [Qiao, Jun-Fei]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China;;[Han, Hong-Gui]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS

ISSN: 1562-2479

年份: 2020

期: 1

卷: 23

页码: 13-26

4 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:897/3899098
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司