• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

This paper proposes a constructing-and-pruning (CP) approach to optimise the structure of a feedforward neural network (FNN) with a single hidden layer. The number of hidden nodes or neurons is determined by their contribution ratios, which are calculated using a Fourier decomposition of the variance of the FNN's output. Hidden nodes with sufficiently small contribution ratios will be eliminated, while new nodes will be added when the FNN cannot satisfy certain design objectives. This procedure is similar to the growing and pruning processes observed in biological neural networks. The performance of the proposed method is evaluated using a number of examples: real-life date classification, dynamic system identification, and the key variables modelling in a wastewater treatment system. Experimental results show that the proposed method effectively optimises the network structure and performs better than some existing algorithms. (c) 2012 Elsevier B.V. All rights reserved.

关键词:

Error reparation Structure optimisation Feedforward neural network Sensitivity analysis Constructing-and-pruning

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Qiao, Jun-Fei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2013

卷: 99

页码: 347-357

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:1

中科院分区:3

被引次数:

WoS核心集被引频次: 54

SCOPUS被引频次: 71

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:328/3906341
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司