收录:
摘要:
Peculiarity oriented mining (POM), aimed at discovering peculiarity rules hidden in a dataset, is a data mining method. Peculiarity factor (PF) is one of the most important concepts in POM. In this paper, it is proved that PF can accurately characterize the peculiarity of data sampled from a normal distribution. However, for a general one-dimensional distribution, it does not have the property. A local version of PF, called LPF, is proposed to solve the difficulty. LPF can effectively describe the peculiarity of data sampled from a continuous one-dimensional distribution. Based on LPF, a framework of local peculiarity oriented mining is presented, which consists of two steps, namely, peculiar data identification and peculiar data analysis. Two algorithms for peculiar data identification and a case study of peculiar data analysis are given to make the framework practical. Experiments on several benchmark datasets show their good performance.
关键词:
通讯作者信息:
电子邮件地址: