收录:
摘要:
As more and more microplastics (MPs) and triclosan (TCS), which are added in consumer products, enter wastewater treatment plants with sewage, there are concerns about the impacts of the co-occurrence of MPs and TCS on biological wastewater treatment. In this study, the co-effects of four 1 mg/L MPs (polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and polyamide (PA)) and 0.5 mg/L TCS on nitrification were investigated in lab-scale nitrifying sequencing batch reactors (SBRs) (SBR-PE, SBR-PS, SBR-PVC and SBR-PA) relative to control which received no MPs (SBR-CK). The removal rates of NH4+-N and TCS in SBR-CK were around 100% and 92%, respectively. Compared with SBR-CK, no measurable inhibition was observed on nitrification in SBR-PE and SBR-PS, however, SBR-PVC and SBR-PA rapidly lost nitrification function during 14 days, which might be due to the reducing of MLSS caused by PVC, PA and TCS co-loading. Furthermore, PS, PVC and PA decreased the removal of TCS. The co-occurrence of TCS and PS, PVC, PA increased extracellular polymeric substances, reduced microbial diversity and shifted microbial communities. Notably, the acrA-03, mexF, fabI, intI1, intI3 and IS613 genes were enriched by MPs and TCS co-loading. Therefore, the removal of MPs and TCS from wastewater should be prioritized.
关键词:
通讯作者信息:
电子邮件地址: