• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂)

收录:

EI Scopus SCIE

摘要:

In this paper, a novel self-organizing radial basis function (SORBF) neural network is proposed for nonlinear identification and modeling. The proposed SORBF consists of simultaneous network construction and parameter optimization. It offers two important advantages. First, the hidden neurons in the SORBF neural network can be added or removed, based on the neuron activity and mutual information (MI), to achieve the appropriate network complexity and maintain overall computational efficiency for identification and modeling. Second, the model performance can be significantly improved through the parameter optimization. The proposed parameter-adjustment-based optimization algorithm, utilizing the forward-only computation (FOC) algorithm instead of the traditionally forward-and-backward computation, simplifies neural network training, and thereby significantly reduces computational complexity. Additionally, the convergence of the SORBF is analyzed in both the structure organizing process phase and the phase following the modification. Lastly, the proposed approach is applied to model and identify the nonlinear dynamical systems. Simulation results demonstrate its effectiveness. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

关键词:

Artificial neural networks Forward-only computation Identification and modeling Nonlinear models

作者机构:

  • [ 1 ] [Qiao, Jun-Fei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

AUTOMATICA

ISSN: 0005-1098

年份: 2012

期: 8

卷: 48

页码: 1729-1734

6 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:138

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 73

SCOPUS被引频次: 89

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:717/3617078
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司