• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

杨金福 (杨金福.) (学者:杨金福) | 宋敏 (宋敏.) | 李明爱 (李明爱.) (学者:李明爱)

收录:

CQVIP PKU CSCD

摘要:

作为一种非参数的分类算法,K近邻(KNN)算法简单有效并且易于实现。但传统的KNN算法认为所有的近邻样本贡献相等,这就使得算法容易受到噪声的干扰,同时对于大的数据集,KNN的计算代价非常大。针对上述问题,该文提出了一种新的基于距离加权的模板约简K近邻算法(TWKNN)。利用模板约简技术,将训练集中远离分类边界的样本去掉,同时按照各个近邻与待测样本的距离为K个近邻赋予不同的权值,增强了算法的鲁棒性。实验结果表明,该方法可以有效地减少训练样本数目,同时还能保持传统KNN的分类精度。

关键词:

距离加权 K近邻(KNN) 模式识别 模板约简

作者机构:

  • [ 1 ] 北京工业大学电子信息与控制工程学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

电子与信息学报

年份: 2011

期: 10

卷: 33

页码: 2378-2383

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:395/3886667
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司