• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Despite extensive research that has been done on sludge bulking, it remains a widespread problem in the operation of activated sludge processes, which brings severe economic and environmental consequences. In this study, a self-organizing radial basis function (SORBF) neural network method is utilized to predict the evolution of the sludge volume index (SVI). The hidden nodes in the SORBF neural network can be grown or pruned based on the node activity (NA) and mutual information (MI) to achieve the appropriate network complexity and maintain overall computational efficiency. The growing and pruning criteria of the SORBF can vary its structure dynamically with the objective to enhance its performance. Moreover, the input-output selection to calculate the SVI values is also discussed. The variables with key relations to the sludge bulking are used as the inputs for the SVI. Finally, the SORBF neural network is applied to the activated sludge wastewater treatment processes (WWTPs) for predicting the SVI, and then for predicting the sludge bulking. Experimental results show the excellent performance of the SORBF method. The performance comparison demonstrates the effectiveness of the proposed SORBF. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

关键词:

Sludge volume index Self-organizing radial basis function Wastewater treatment process Sludge bulking

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Qiao, Jun-Fei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Jun-Fei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF PROCESS CONTROL

ISSN: 0959-1524

年份: 2012

期: 6

卷: 22

页码: 1103-1112

4 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 57

SCOPUS被引频次: 73

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:68/3911373
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司