• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Lei (Wang, Lei.) | Su, Zhong (Su, Zhong.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Yang, Cuili (Yang, Cuili.)

收录:

EI Scopus SCIE

摘要:

Echo state network (ESN) refers to a novel recurrent neural network with a largely and randomly generated reservoir and a trainable output layer, which has been utilized in the time series prediction. In spite of that, since the output weights are computed by the simple linear regression, there may be an ill-posed problem in the training process for ESN. In order to tackle this issue, a sparse Bayesian ESN (SBESN) is given. The proposed SBESN attempts to estimate the probability of the outputs and trains the network through sparse Bayesian learning, where independent regularization priors should be implied to each weight rather than sharing one prior for all weights. Simulation results illustrate that the SBESN model is insensitivity to reservoir size and completely outperforms other models.

关键词:

Time series prediction Ill-posed problem Echo state network Sparse Bayesian learning

作者机构:

  • [ 1 ] [Wang, Lei]Beijing Informat Sci & Technol Univ, Beijing Key Lab High Dynam Nav Technol, Beijing 100192, Peoples R China
  • [ 2 ] [Su, Zhong]Beijing Informat Sci & Technol Univ, Beijing Key Lab High Dynam Nav Technol, Beijing 100192, Peoples R China
  • [ 3 ] [Wang, Lei]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
  • [ 4 ] [Su, Zhong]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
  • [ 5 ] [Wang, Lei]Beijing Jingxinke High End Informat Ind Technol R, Beijing 100192, Peoples R China
  • [ 6 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Lei]Beijing Informat Sci & Technol Univ, Beijing Key Lab High Dynam Nav Technol, Beijing 100192, Peoples R China;;[Wang, Lei]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China;;[Wang, Lei]Beijing Jingxinke High End Informat Ind Technol R, Beijing 100192, Peoples R China;;[Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEURAL COMPUTING & APPLICATIONS

ISSN: 0941-0643

年份: 2020

期: 12

卷: 33

页码: 7089-7102

6 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:961/3902314
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司