• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Jing (Zhao, Jing.) (学者:赵京) | Gong, Shiqiu (Gong, Shiqiu.) | Xie, Biyun (Xie, Biyun.) | Duan, Yaxing (Duan, Yaxing.) | Zhang, Ziqiang (Zhang, Ziqiang.)

收录:

EI Scopus SCIE

摘要:

Accurate prediction of human motion is essential to ensure the efficiency and safety of human-robot interaction (HRI), especially when humans and robots interact closely in a shared environment. A novel method is developed in this work to address three fundamental problems in human arm motion prediction, i.e. given the early-stage fingertip trajectory of a human arm reaching motion, how to predict the motion duration, the motion destination, and the remaining fingertip trajectory. First, a modified minimum jerk model (MMJM), containing three input parameters-the motion duration, the motion destination, and the early-stage fingertip trajectory, is developed to express and predict the remaining fingertip trajectory. Next, these unknown parameters are determined by determining the optimal starting time of motion prediction and employing Gaussian process regression models (GPRs). Finally, the proposed human arm motion prediction method is validated by simulations and HRI experiments.

关键词:

Gaussian process regression Human-robot interaction motion prediction minimum jerk model

作者机构:

  • [ 1 ] [Zhao, Jing]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 2 ] [Gong, Shiqiu]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 3 ] [Duan, Yaxing]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Ziqiang]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 5 ] [Xie, Biyun]Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA

通讯作者信息:

  • [Xie, Biyun]Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ADVANCED ROBOTICS

ISSN: 0169-1864

年份: 2020

期: 3-4

卷: 35

页码: 205-218

2 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:342/4298184
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司