首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[期刊论文]

EEG Classification Approach Based on the Extreme Learning Machine and Wavelet Transform

分享
编辑 删除 报错

作者:

Yuan, Qi (Yuan, Qi.) | Zhou, Weidong (Zhou, Weidong.) | Zhang, Jing (Zhang, Jing.) | 展开

收录:

Scopus SCIE

摘要:

Automatic detection and classification of electroencephalogram (EEG) epileptic activity aid diagnosis and relieve the heavy workload of doctors. This article presents a new EEG classification approach based on the extreme learning machine (ELM) and wavelet transform (WT). First, the WT is used to extract useful features when certain scales cover abnormal components of the EEG. Second, the ELM algorithm is used to train a single hidden layer of feedforward neural network (SLFN) features. Finally, the SLFN is tested with interictal and ictal EEGs. The experiments demonstrated that the proposed approach achieved a satisfactory classification rate of 99.25% for interictal and ictal EEGs.

关键词:

epilepsy electroencephalogram ELM classification wavelet analysis

作者机构:

  • [ 1 ] [Yuan, Qi]Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
  • [ 2 ] [Zhou, Weidong]Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
  • [ 3 ] [Li, Shufang]Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
  • [ 4 ] [Cai, Dongmei]Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Biomech & Med Informat Inst, Beijing, Peoples R China
  • [ 6 ] [Zeng, Yanjun]Beijing Univ Technol, Biomech & Med Informat Inst, Beijing, Peoples R China

通讯作者信息:

  • [Zhou, Weidong]Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China

电子邮件地址:

查看成果更多字段

来源 :

CLINICAL EEG AND NEUROSCIENCE

ISSN: 1550-0594

年份: 2012

期: 2

卷: 43

页码: 127-132

2 . 0 0 0

JCR@2022

ESI学科: NEUROSCIENCE & BEHAVIOR;

JCR分区:2

中科院分区:4

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 19

近30日浏览量: 0

在线人数/总访问数:256/4527610
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司