• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Hao (Wang, Hao.) | Edano, Louis (Edano, Louis.) | Valentino, Lauren (Valentino, Lauren.) | Lin, Yupo J. (Lin, Yupo J..) | Palakkal, Varada Menon (Palakkal, Varada Menon.) | Hu, Dong-Li (Hu, Dong-Li.) | Chen, Biao-Hua (Chen, Biao-Hua.) (学者:陈标华) | Liu, Di-Jia (Liu, Di-Jia.)

收录:

EI Scopus SCIE

摘要:

Capacitive deionization (CDI) represents one of the most thermodynamically efficient technologies for brackish water desalination. Its performance is highly reliant on the surface properties of carbon-based electrodes. Zeolitic-imidazolate framework (ZIF)-derived carbon materials have emerged among the most promising candidates owing to their high structural and compositional tuneability. However, the impacts of the precursory ZIF structure on the properties of the final carbon, and therefore, CDI capacity and efficiency remain to be further explored. In this work, four Zn-based ZIFs with different side-chain substitutions on the imidazolates were synthesized on a gram scale with high yields to produce N-doped carbons by pyrolysis. The resulting carbons along with four commercial carbon blacks were characterized physically and electrochemically to explore the structure-performance relationship. We demonstrated that the imidazole side-chain substitution alters the ZIF's decomposition during pyrolysis, influencing the elemental compositions, surface properties, wettability and graphitization levels. The diverse carbon properties result in variable double layer capacitance and charge-transfer resistance, ultimately impacting the CDI performance. Among these carbons, Zn (4abIm)(2)-C afforded the greatest salt adsorption capacity of 14.19 mgNacl.g(C)(-l), while Zn (mlm)(2)-C showed the highest overall salt adsorption capacity and rate; both exceeded the performance of the commercial carbon blacks.

关键词:

Porous carbon Structure-property relationship Capacitive deionization Metal-organic frameworks Water desalination

作者机构:

  • [ 1 ] [Wang, Hao]Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
  • [ 2 ] [Liu, Di-Jia]Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
  • [ 3 ] [Edano, Louis]Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
  • [ 4 ] [Valentino, Lauren]Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
  • [ 5 ] [Lin, Yupo J.]Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
  • [ 6 ] [Palakkal, Varada Menon]Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
  • [ 7 ] [Hu, Dong-Li]Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
  • [ 8 ] [Wang, Hao]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 9 ] [Chen, Biao-Hua]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 10 ] [Liu, Di-Jia]Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA

通讯作者信息:

  • [Liu, Di-Jia]Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA;;[Lin, Yupo J.]Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NANO ENERGY

ISSN: 2211-2855

年份: 2020

卷: 77

1 7 . 6 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:169

被引次数:

WoS核心集被引频次: 58

SCOPUS被引频次: 57

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:614/3878587
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司