• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Juan (Fang, Juan.) (学者:方娟) | Hu, Juntao (Hu, Juntao.) | Wei, Jianhua (Wei, Jianhua.) | Liu, Tong (Liu, Tong.) | Wang, Bo (Wang, Bo.) (学者:王波)

收录:

EI Scopus SCIE PubMed

摘要:

The cloud computing and microsensor technology has greatly changed environmental monitoring, but it is difficult for cloud-computing based monitoring system to meet the computation demand of smaller monitoring granularity and increasing monitoring applications. As a novel computing paradigm, edge computing deals with this problem by deploying resource on edge network. However, the particularity of environmental monitoring applications is ignored by most previous studies. In this paper, we proposed a resource allocation algorithm and a task scheduling strategy to reduce the average completion latency of environmental monitoring application, when considering the characteristic of environmental monitoring system and dependency among task. Simulations are conducted, and the results show that compared with the traditional algorithms. With considering the emergency task, the proposed methods decrease the average completion latency by 21.6% in the best scenario.

关键词:

environmental monitoring task scheduling resource allocation edge computing

作者机构:

  • [ 1 ] [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Juntao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wei, Jianhua]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Tong]Beijing Comp Ctr, Beijing 100094, Peoples R China
  • [ 5 ] [Wang, Bo]Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Beijing 100096, Peoples R China

通讯作者信息:

  • 方娟

    [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SENSORS

年份: 2020

期: 21

卷: 20

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:139

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:4746/3871042
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司