• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Liu-Cang (Wu, Liu-Cang.) | Zhang, Zhong-Zhan (Zhang, Zhong-Zhan.) (学者:张忠占) | Xu, Deng-Ke (Xu, Deng-Ke.)

收录:

Scopus SCIE

摘要:

In many applications, a single Box-Cox transformation cannot necessarily produce the normality, constancy of variance and linearity of systematic effects. In this paper, by establishing a heterogeneous linear regression model for the Box-Cox transformed response, we propose a hybrid strategy, in which variable selection is employed to reduce the dimension of the explanatory variables in joint mean and variance models, and Box-Cox transformation is made to remedy the response. We propose a unified procedure which can simultaneously select significant variables in the joint mean and variance models of Box-Cox transformation which provide a useful extension of the ordinary normal linear regression models. With appropriate choice of the tuning parameters, we establish the consistency of this procedure and the oracle property of the obtained estimators. Moreover, we also consider the maximum profile likelihood estimator of the Box-Cox transformation parameter. Simulation studies and a real example are used to illustrate the application of the proposed methods.

关键词:

Box-Cox transformation joint mean and variance models penalized maximum likelihood estimator variable selection

作者机构:

  • [ 1 ] [Wu, Liu-Cang]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Zhong-Zhan]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Deng-Ke]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Liu-Cang]Kunming Univ Sci & Technol, Fac Sci, Kunming 650093, Peoples R China

通讯作者信息:

  • 张忠占

    [Zhang, Zhong-Zhan]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF APPLIED STATISTICS

ISSN: 0266-4763

年份: 2012

期: 12

卷: 39

页码: 2543-2555

1 . 5 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:74

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:322/3654592
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司