• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Haoxiang (He, Haoxiang.) (学者:何浩祥) | Yan, Weiming (Yan, Weiming.) (学者:闫维明) | Zhang, Ailin (Zhang, Ailin.)

收录:

EI Scopus SCIE

摘要:

The significance of information fusion for structural health monitoring and damage detection is introduced. The three levels of information fusion for multisensors are described. For the complex in the structural health monitoring, the distributed multisensor information fusion is more suitable and the structure is discussed. In the damage information fusion for character level, the concept for structural integral support vector machine damage detection matrix, damage self-information, and damage information entropy are presented. For a complex structure, it can be divided into multiple substructures in order to simplify the difficult for health monitoring, the data acquisition and support vector machine are established for each substructure in order to form integral damage detection matrix. In the damage information fusion for decision level, the methods based on fuzzy set theory, material element theory, and fuzzy neural network are proposed. The results given by a numerical example about space structure show that all the methods are valid and effective.

关键词:

作者机构:

  • [ 1 ] [He, Haoxiang]Beijing Univ Technol, Beijing Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Weiming]Beijing Univ Technol, Beijing Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Ailin]Beijing Univ Technol, Beijing Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China

通讯作者信息:

  • 何浩祥

    [He, Haoxiang]Beijing Univ Technol, Beijing Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS

ISSN: 1550-1329

年份: 2012

2 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:137

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:59/3277514
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司