• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Mu (Zhu, Mu.) | Zhang, Hui (Zhang, Hui.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Zhuo, Li (Zhuo, Li.)

收录:

EI Scopus SCIE

摘要:

Existing deployed Unmanned Aerial Vehicles (UAVs) visual trackers are usually based on the correlation filter framework. Although thesemethods have certain advantages of lowcomputational complexity, the tracking performance of small targets and fast motion scenarios is not satisfactory. In this paper, we present a novel multilevel prediction Siamese network (MLPS) for object tracking in UAV videos, which consists of Siamese feature extraction module and multi-level prediction module. The multi-level prediction module can make full use of the characteristics of each layer features to achieve robust evaluation of targets with different scales. Meanwhile, for small-size target tracking, we design a residual feature fusion block, which is used to constrain the low-level feature representation by using high-level abstract semantics, and obtain the improvement of the tracker's ability to distinguish scene details. In addition, we propose a layer attention fusion block which is sensitive to the informative features of each layers to achieve adaptive fusion of different levels of correlation responses by dynamically balancing the multi-layer features. Sufficient experiments on several UAV tracking benchmarks demonstrate that MLPS achieves state-of-the-art performance and runs at a speed over 97 FPS. (c) 2020 Elsevier B.V. All rights reserved.

关键词:

UAV tracking Small target Multi-level prediction Feature fusion

作者机构:

  • [ 1 ] [Zhu, Mu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Hui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Zhang, Hui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 6 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 7 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • [Zhang, Hui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IMAGE AND VISION COMPUTING

ISSN: 0262-8856

年份: 2020

卷: 103

4 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:68/3911869
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司