• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu Ning (Liu Ning.) | Zhang Xin-Ping (Zhang Xin-Ping.) (学者:张新平) | Dou Fei (Dou Fei.)

收录:

Scopus SCIE PKU CSCD

摘要:

Blends and doping of organic semiconductors are generally employed to improve effectively the charge transfer and dissociation performance. The absorption spectrum may be optimized making use of the different energy states of the components in the blends, which may favor the development of the photovoltaic or solar cell devices. Excellent type-II heterojunction structures can be produced by mixing the small-molecule perylene (EPPTC) and a copolymer of polyfluorene (F8BT). Actually, F8BT and EPPTC exhibit absorptions in the blue region and in the green region, respectively. Thus, the blend will have a much broadened absorption spectrum. In the experiment, the blend solution of these two materials in chloroform is spin-coated onto a piece of glass substrate, so that EPPTC is doped into the polymer of F8BT and the heterojunction structure forms in the final solid film. Then, steady-state absorption and fluorescence spectroscopy, as well as the transient photoluminesence spectroscopy (time-correlated single-photon counting), is used to investigate the formation and the photoluminescence properties of exciplex in the heterojunction film of F8BT doped with EPPTC. The photoluminscence (PL) spectrum and the life-time are measured to characterize the exciplex in the blend film, where the longer life-time of the red-shifted PL spectrum confirms the formation of the exciplex. This provides various experimental data for understanding the formation and the photophysical properties of the heterojunction structures in organic semiconductor blends. Futhermore, the absorption of the blend film covers a large range of the visible spectrum. Therefore, this kind of doping of organic semiconductor is important for the development of photovoltaic and solar cell devices.

关键词:

organic semiconductor blend film exciplex charge-transfer state heterojunction

作者机构:

  • [ 1 ] [Liu Ning]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu Ning]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Liu Ning]Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ACTA PHYSICA SINICA

ISSN: 1000-3290

年份: 2012

期: 2

卷: 61

1 . 0 0 0

JCR@2022

ESI学科: PHYSICS;

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1444/3896311
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司