• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhou MingZheng (Zhou MingZheng.) | Xia GuoDong (Xia GuoDong.) (学者:夏国栋) | Chai Lei (Chai Lei.) | Li Jian (Li Jian.) | Zhou LiJun (Zhou LiJun.)

收录:

EI Scopus SCIE

摘要:

Silver nanofluids with three different volume fractions are prepared by a one-step chemical reduction method (Ultrasound-assisted Membrane Reaction (UAMR)). The convective heat transfer and friction characteristics of silver nanofluid in micro-pin fin heat sink are investigated experimentally. The results indicate that the pressure drops of nanofluids with different volume fractions have little difference. Compared to the base fluid (polyvinylpyrrolidone (PVP) solution), the pressure drop of nanofluids increases slightly at the same volume flow rate. When the flow rate is small, the increment is not obvious. The introduction of surfactant increases the fluid viscosity, so the pressure drops of nanofluids are larger than those of pure water, under the same flow rate. However, the maximum difference is no more than 10%. The volume fraction of silver nanoparticles significantly affects the convection heat transfer coefficient of micro-pin fin heat sink. The presence of nanoparticles improves significantly the heat transfer performance. However, high viscosity of the nanofluids hinders the heat transfer strengthening effect of nanofluids. In the present work, when the volume fraction of silver particles reaches to 0.012%, the thermal resistance of nanofluid gradually becomes lower than that of deionized water, which indicates the integrated heat transfer enhancement of nanofluids.

关键词:

heat transfer micro-pin fin nanofluids viscosity volume fraction

作者机构:

  • [ 1 ] [Zhou MingZheng]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Xia GuoDong]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Chai Lei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Li Jian]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Zhou LiJun]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • 夏国栋

    [Xia GuoDong]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SCIENCE CHINA-TECHNOLOGICAL SCIENCES

ISSN: 1674-7321

年份: 2012

期: 1

卷: 55

页码: 155-162

4 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:138

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 28

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:238/3608639
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司