收录:
摘要:
Carbon nanotubes (CNTs) are an excellent candidate for the reinforcement of composite materials owing to their distinctive mechanical and electrical properties. Reticulate carbon nanotubes (R-CNTs) with a 2D or 3D configuration have been manufactured in which nonwoven connected CNTs are homogeneously distributed and connected with each other. A composite reinforced by R-CNTs can be fabricated by infiltrating a polymer into the R-CNT structure, which overcomes the inherent disadvantages of the lack of weaving of the CNTs and the low strength of the interface between CNTs and the polymer. In this paper, a 2D plane strain model of a R-CNT composite is presented to investigate its micro-deformation and effective stiffness. Using the two-scale expansion method, the effective stiffness coefficients and Young's modulus are determined. The influences of microstructural parameters on the micro-deformation and effective stiffness of the R-CNT composite are studied to aid the design of new composites with optimal properties. It is shown that R-CNT composites have a strong microstructure-dependence and better effective mechanical properties than other CNT composites. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
COMPOSITES PART B-ENGINEERING
ISSN: 1359-8368
年份: 2011
期: 8
卷: 42
页码: 2123-2129
1 3 . 1 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:290
JCR分区:1
中科院分区:2
归属院系: