• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zuo, Xi-Nian (Zuo, Xi-Nian.) | Xing, Xiu-Xia (Xing, Xiu-Xia.)

收录:

Scopus SCIE

摘要:

Neuroimaging community usually employs spatial smoothing to denoise magnetic resonance imaging (MRI) data, e. g., Gaussian smoothing kernels. Such an isotropic diffusion (ISD) based smoothing is widely adopted for denoising purpose due to its easy implementation and efficient computation. Beyond these advantages, Gaussian smoothing kernels tend to blur the edges, curvature and texture of images. Researchers have proposed anisotropic diffusion (ASD) and non-local diffusion (NLD) kernels. We recently demonstrated the effect of these new filtering paradigms on preprocessing real degraded MRI images from three individual subjects. Here, to further systematically investigate the effects at a group level, we collected both structural and functional MRI data from 23 participants. We first evaluated the three smoothing strategies' impact on brain extraction, segmentation and registration. Finally, we investigated how they affect subsequent mapping of default network based on resting-state functional MRI (R-fMRI) data. Our findings suggest that NLD-based spatial smoothing maybe more effective and reliable at improving the quality of both MRI data preprocessing and default network mapping. We thus recommend NLD may become a promising method of smoothing structural MRI images of R-fMRI pipeline.

关键词:

作者机构:

  • [ 1 ] [Zuo, Xi-Nian]Chinese Acad Sci, Inst Psychol, Lab Funct Connectome & Dev, Key Lab Behav Sci, Beijing 100101, Peoples R China
  • [ 2 ] [Zuo, Xi-Nian]Chinese Acad Sci, Inst Psychol, Magnet Resonance Imaging Ctr, Beijing 100101, Peoples R China
  • [ 3 ] [Xing, Xiu-Xia]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China

通讯作者信息:

  • [Zuo, Xi-Nian]Chinese Acad Sci, Inst Psychol, Lab Funct Connectome & Dev, Key Lab Behav Sci, Beijing 100101, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PLOS ONE

ISSN: 1932-6203

年份: 2011

期: 10

卷: 6

3 . 7 0 0

JCR@2022

ESI学科: Multidisciplinary;

ESI高被引阀值:501

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 40

SCOPUS被引频次: 46

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:110/3609582
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司