• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Jing (Yuan, Jing.) | Dai, Hongxing (Dai, Hongxing.) (学者:戴洪兴) | Zhang, Lei (Zhang, Lei.) | Deng, Jiguang (Deng, Jiguang.) | Liu, Yuxi (Liu, Yuxi.) | Zhang, Han (Zhang, Han.) | Jiang, Haiyan (Jiang, Haiyan.) | He, Hong (He, Hong.) (学者:何洪)

收录:

CPCI-S EI Scopus SCIE

摘要:

The three-dimensional (3D) macroporous orthorhombically crystallized perovskite-like oxides La2CuO4 were prepared using the polymethyl methacrylate (PMMA) microsphere-templating strategy with nitrates of lanthanum and copper as metal source and a mixed solution of methanol and ethylene glycol as solvent in the absence or presence of citric acid and after calcination at various atmospheres. The as-prepared materials were characterized by means of X-ray diffraction, N-2 adsorption-desorption, scanning electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction. Catalytic activities of the materials were evaluated for the combustion of methane. The catalyst (La2CuO4-1) prepared with PMMA and citric acid possessed a 3D ordered macroporous (3DOM) structure and a surface area up to 46 m(2)/g, whereas the one (La2CuO4-2) prepared with PMMA but without citric acid exhibited a 3D wormhole-like macroporous structure and a surface area of 39 m(2)/g. There was the presence of a trace amount of La2O2CO3 phase in the La2CuO4-1 and La2CuO4-2 catalysts. The calcination procedure (first in N-2 flow at 700 degrees C and then in air flow at 300 and 800 degrees C, respectively) was crucial in forming the 3D porous structure of La2CuO4. The as-obtained catalysts had overstoichiometric oxygen. The La2CuO4-1 catalyst showed better low-temperature reducibility than the La2CuO4-2 and La2CuO4-Citrate (derived from the conventional citric acid-complexing route) catalysts. The 3D porous La2CuO4 materials performed well in catalyzing the oxidation of methane, with the La2CuO4-1 catalyst showing the best performance (the temperature for 90% CH4 conversion = 672 degrees C (reaction rate = ca. 40 mmol/(g h)) at CH4/O-2 molar ratio = 1/10 and space velocity = 50,000 mL/(g h). It is concluded that the excellent catalytic performance of La2CuO4-1 was mainly related to the higher surface area, better low-temperature reducibility, and 3DOM architecture. (C) 2011 Elsevier B.V. All rights reserved.

关键词:

Hard-templating strategy lanthanum cuprate Low-temperature reducibility Methane combustion Three-dimensional macroporous Perovskite-like oxide catalyst

作者机构:

  • [ 1 ] [Yuan, Jing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Dai, Hongxing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Lei]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Deng, Jiguang]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Yuxi]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Han]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Jiang, Haiyan]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 8 ] [He, Hong]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 戴洪兴

    [Dai, Hongxing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CATALYSIS TODAY

ISSN: 0920-5861

年份: 2011

期: 1

卷: 175

页码: 209-215

5 . 3 0 0

JCR@2022

ESI学科: CHEMISTRY;

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 40

SCOPUS被引频次: 43

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1016/3865317
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司