• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao Feng (Gao Feng.) | He Jingsha (He Jingsha.) (学者:何泾沙) | Lv Xin (Lv Xin.) | Zhang Feng (Zhang Feng.)

收录:

Scopus SCIE CSCD

摘要:

In network environments, before meaningful interactions can begin, trust may need to be established between two interactive entities in which an entity may ask the other to provide some information involving privacy. Consequently, privacy protection and trust establishment become important in network interactions. In order to protect privacy while facilitating effective interactions, we propose a trust-based privacy protection method. Our main contributions in this paper are as follows: (1) We introduce a novel concept of k-sensitive privacy as a measure to assess the potential threat of inferring privacy; (2) According to trust and k-sensitive privacy evaluation, our proposed method can choose appropriate interaction patterns with lower degree of inferring privacy threat; (3) By considering interaction patterns for privacy protection, our proposed method can overcome the shortcomings of some current privacy protection methods which may result in low interaction success rate. Simulation results show that our method can achieve effective interactions with less privacy loss.

关键词:

interaction pattern network security network interaction privacy protection trust

作者机构:

  • [ 1 ] [Gao Feng]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 2 ] [He Jingsha]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Lv Xin]State Informat Ctr, Beijing 100045, Peoples R China
  • [ 4 ] [Zhang Feng]Beijing Univ Posts & Telecommun, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China

通讯作者信息:

  • [Gao Feng]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CHINA COMMUNICATIONS

ISSN: 1673-5447

年份: 2011

期: 4

卷: 8

页码: 141-152

4 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:98/4737729
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司