收录:
摘要:
特征选择技术已经被广泛地应用于生物信息学科,随机森林(random forests,RF)是其中一种重要的特征选择方法。利用RF对胃癌、结肠癌和肺癌等5组基因表达谱数据进行特征基因选择,将选择结果与支持向量机(support vector machine,SVM)结合对原数据集分类,并对特征基因选择及分类结果进行初步的分析。同时使用微阵列显著性分析(signific antanalysis of microarray,SAM)和ReliefF法与RF比较,结果显示随机森林选择的特征基因包含更多分类信息,分类准确率更高。结合该方法自身具有的分类方面的诸多优势,随机森林可以作为一种可靠的基因表达谱...
关键词:
通讯作者信息:
电子邮件地址: