• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dong, Shanwen (Dong, Shanwen.) | Xu, Bin (Xu, Bin.) | Lu, Zhenyang (Lu, Zhenyang.) | Chen, Shujun (Chen, Shujun.) (学者:陈树君) | Jiang, Fan (Jiang, Fan.) (学者:蒋凡)

收录:

EI SCIE

摘要:

A method of controlling droplet transfer by plasma arc was proposed to solve the problem that cathode spot force hindered the transition of cathode droplet under high current of twin-wire indirect arc (TWIA) in skew-coupling arc (SCA) welding. The effects of the plasma arc on droplet transfer were analyzed from the perspectives of plasma arc current (PAC) and plasma gas flow rate (PGFR). The current-voltage waveform, arc shape and the transition process of droplet were studied by using an electric signal and high-speed camera acquisition system. The results show that controlling droplet transfer by the plasma arc is feasible and effective in the SCA welding. With the increase of the PAC, the degree of the plasma arc deflection increased, and increasing the PGFR has a shrinkage effect on the top of the SCA. Increasing the PAC or the PGFR made the TWIA current vary in a small range, and the plasma arc voltage increase. Increasing the PGFR is more effective to promote the transition of cathode droplet than increasing the PAC, because the plasma fluid force of the TWIA on cathode droplet is enhanced by the double axial thrust of the plasma arc and the TWIA. The cooling effect of the plasma gas on anode droplet weakens the promoting effect of the plasma gas on the transition of anode droplet. The existence of the fluid beam hanging at the cathode wire is important to improve the transition of cathode droplet. The PGFR and the PAC could be cooperatively adjusted to promote the transition process of anode and cathode droplet.

关键词:

Droplet transfer Plasma arc current (PAC) Plasma gas flow rate (PGFR) Skew-coupling arc (SCA)

作者机构:

  • [ 1 ] [Dong, Shanwen]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Bin]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Lu, Zhenyang]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Shujun]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Jiang, Fan]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 6 ] [Jiang, Fan]Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin, Heilongjiang, Peoples R China

通讯作者信息:

  • 蒋凡

    [Jiang, Fan]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY

ISSN: 0924-0136

年份: 2020

卷: 285

6 . 3 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:37

JCR分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:602/2903409
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司