• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Hu, Renbing (Hu, Renbing.) | Zhang, Hongxun (Zhang, Hongxun.) | Liu, Chunnian (Liu, Chunnian.)

收录:

EI Scopus SCIE

摘要:

As a powerful formalism, Bayesian networks play an increasingly important role in the Uncertainty Field. This paper proposes a hybrid method to discover the knowledge represented in Bayesian networks. The hybrid method combines dependency analysis, ant colony optimization (ACO), and the simulated annealing strategy. Firstly, the new method uses order-0 independence tests with a self-adjusting threshold value to reduce the size of the search space, so that the search process takes less time to find the near-optimal solution. Secondly, better Bayesian network models are generated by using an improved ACO algorithm, where a new heuristic function is introduced to further enhance the search effectiveness and efficiency. Finally, an optimization scheme based on simulated annealing is employed to improve the optimization efficiency in the stochastic search process of ants. In a number of experiments and comparisons, the hybrid method outperforms the original ACO-B which uses ACO and some other network learning algorithms. (C) 2011 Elsevier B.V. All rights reserved.

关键词:

Ant colony optimization Bayesian networks Function Heuristic Simulated annealing strategy Variable search space

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Renbing]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Hongxun]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Chunnian]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED SOFT COMPUTING

ISSN: 1568-4946

年份: 2011

期: 4

卷: 11

页码: 3373-3384

8 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:156

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:95/3601126
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司