收录:
摘要:
针对一般RBF神经网络在学习过程中网络结构不能改变的问题,提出一种动态RBF神经网络结构设计方法.算法的实质是利用敏感度分析法(SA)对神经网络模型的输出进行分析,通过判断隐含层神经元的输出对整个网络输出的影响,删除RBF隐含层中冗余的神经元,实现对神经网络的动态修剪.非线性函数逼近结果及动态系统建模结果表明,该动态RBF神经网络具有较好的性能;与最小RBF(MRBF)神经网络相比,采用所提算法能得到更小的检测误差和史短的训练时间,最终网络结构紧凑.
关键词:
通讯作者信息:
电子邮件地址: