• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Lijiao (Zhao, Lijiao.) (学者:赵丽娇) | Liu, Tingting (Liu, Tingting.) | Zhong, Rugang (Zhong, Rugang.) (学者:钟儒刚)

收录:

Scopus SCIE

摘要:

N-phosphoryl amino acids (PAAs) are important species in the origin of life that self-catalyze and self-assemble into polypeptides and polynucleotides under mild conditions. Both experimental and theoretical studies have shown that a penta-coordinated phosphorus intermolecular mixed carboxylic-phosphoric anhydride (IMCPA) is formed as the common intermediate in these reactions. In this work, the mechanism for the formation of stereoisomeric IMCPAs from PAAs is investigated using density functional theory (DFT) calculations at the B3LYP/6-311+G(d,p) theoretical level. The molecular structures of the cis- and the trans-IMCPAs, as well as the transition states of the two stereochemical reaction pathways, were characterized in detail. The results showed that the hydroxyl groups of PAAs were situated in favorable positions for attacking the phosphorus atom from two sides of the phosphoryl group, resulting in the formation of the cis-IMCPA and the trans-IMCPA, respectively. The trans-isomers were predicted to be more likely to undergo a further reaction involving an ester exchange on the phosphorus than the cis-isomers. By comparing the relative energies of the IMCPAs and the activation energies, the trans-IMCPAs were computed to be more stable than the cis-IMCPAs, but the energy barriers for the formation of the trans- and the cis-isomers were similar. This work is expected to shed light on the stereochemical effect involved in the chemical evolution of biomolecules.

关键词:

density functional theory Intermolecular mixed carboxylic-phosphoric anhydride stereoselectivity

作者机构:

  • [ 1 ] [Zhao, Lijiao]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Tingting]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhong, Rugang]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China

通讯作者信息:

  • 赵丽娇

    [Zhao, Lijiao]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY

ISSN: 0219-6336

年份: 2011

期: 2

卷: 10

页码: 217-229

2 . 4 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:252

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:4897/2937444
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司