• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qin, Yu (Qin, Yu.) | Deng, Hongfei (Deng, Hongfei.) | Yan, Hong (Yan, Hong.) (学者:闫红) | Zhong, Rugang (Zhong, Rugang.) (学者:钟儒刚)

收录:

EI Scopus SCIE PubMed

摘要:

The quantitative structure-activity relationship (QSAR) studies are investigated in a series of chloroethylnitrosoureas (CENUs) acting as alkylating agents of tumors by neural networks (NNs). The QSAR model is described inaccurately by the traditional multiple linear regression (MLR) model for the substitution of CENUs at N-3, whose characteristics play key roles in the biological activity. A nonlinear QSAR study is undertaken by a three-layered NN model, using molecular descriptors that are known to be responsible for the antitumor activity to optimize the input variables of the MLR model. The results demonstrate that NN models present the relationship between antitumor activity and molecular descriptors clearly, and they yield predictions in excellent agreement with the experiment's obtained values (R(2) = 0.983). The R(2) value is 0.983 for the 5-8-1 NN model, compared with 0.506 for the MLR model, and the nonlinear model is able to account for 98.3% of the variance of antitumor activities. (C) 2011 Elsevier Inc. All rights reserved.

关键词:

Nonlinearity QSAR Molecular descriptor Chloroethylnitrosourea Neural network

作者机构:

  • [ 1 ] [Qin, Yu]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 2 ] [Deng, Hongfei]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 3 ] [Yan, Hong]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhong, Rugang]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China

通讯作者信息:

  • 闫红

    [Yan, Hong]Beijing Univ Technol, Coll Life Sci & Bioengn, Pingleyuan St 100, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF MOLECULAR GRAPHICS & MODELLING

ISSN: 1093-3263

年份: 2011

期: 6

卷: 29

页码: 826-833

2 . 9 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:534/3906564
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司