• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li Yujian (Li Yujian.) | Liu Bo (Liu Bo.) (学者:刘博) | Yang Xinwu (Yang Xinwu.) | Fu Yaozong (Fu Yaozong.) | Li Houjun (Li Houjun.)

收录:

EI Scopus SCIE PubMed

摘要:

Based on the "convexly separable" concept, we present a solid geometric theory and a new general framework to design piecewise linear classifiers for two arbitrarily complicated nonintersecting classes by using a "multiconlitron," which is a union of multiple conlitrons that comprise a set of hyperplanes or linear functions surrounding a convex region for separating two convexly separable datasets. We propose a new iterative algorithm called the cross distance minimization algorithm (CDMA) to compute hard margin non-kernel support vector machines (SVMs) via the nearest point pair between two convex polytopes. Using CDMA, we derive two new algorithms, i.e., the support conlitron algorithm (SCA) and the support multiconlitron algorithm (SMA) to construct support conlitrons and support multiconlitrons, respectively, which are unique and can separate two classes by a maximum margin as in an SVM. Comparative experiments show that SMA can outperform linear SVM on many of the selected databases and provide similar results to radial basis function SVM on some of them, while SCA performs better than linear SVM on three out of four applicable databases. Other experiments show that SMA and SCA may be further improved to draw more potential in the new research direction of piecewise linear learning.

关键词:

piecewise linear learning piecewise linear classifier support multiconlitron algorithm support vector machine multiconlitron support conlitron algorithm cross distance minimization algorithm Conlitron

作者机构:

  • [ 1 ] [Li Yujian]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu Bo]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yang Xinwu]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Fu Yaozong]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li Houjun]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 李玉鑑

    [Li Yujian]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS

ISSN: 1045-9227

年份: 2011

期: 2

卷: 22

页码: 276-289

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 31

SCOPUS被引频次: 41

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:504/4292067
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司