• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Gaorong (Li, Gaorong.) (学者:李高荣) | Peng, Heng (Peng, Heng.) | Zhu, Lixing (Zhu, Lixing.)

收录:

Scopus SCIE

摘要:

M-estimation is a widely used technique for robust statistical inference. In this paper, we investigate the asymptotic properties of a nonconcave penalized M-estimator in sparse, high-dimensional, linear regression models. Compared with classic M-estimation, the nonconcave penalized M-estimation method can perform parameter estimation and variable selection simultaneously. The proposed method is resistant to heavy-tailed errors or outliers in the response. We show that, under certain appropriate conditions, the nonconcave penalized M-estimator has the so-called "Oracle Property"; it is able to select variables consistently, and the estimators of nonzero coefficients have the same asymptotic distribution as they would if the zero coefficients were known in advance. We obtain consistency and asymptotic normality of the estimators when the dimension p(n) of the predictors satisfies the conditions p(n) log n/n -> 0 and p(n)(2)/n -> 0, respectively, where n is the sample size. Based on the idea of sure independence screening (SIS) and rank correlation, a robust rank SIS (RSIS) is introduced to deal with ultra-high dimensional data. Simulation studies were carried out to assess the performance of the proposed method for finite-sample cases, and a dataset was analyzed for illustration.

关键词:

SIS Linear model oracle property rank correlation robust estimation variable selection

作者机构:

  • [ 1 ] [Li, Gaorong]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Heng]Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
  • [ 3 ] [Zhu, Lixing]Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China

通讯作者信息:

  • 李高荣

    [Li, Gaorong]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

STATISTICA SINICA

ISSN: 1017-0405

年份: 2011

期: 1

卷: 21

页码: 391-419

1 . 4 0 0

JCR@2022

ESI学科: MATHEMATICS;

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 90

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:209/4298951
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司