• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Wenjing (Li, Wenjing.) | Li, Meng (Li, Meng.) | Zhang, Junkai (Zhang, Junkai.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Aiming to improve the model's generalization performance for nonlinear system modeling, a self organizing reciprocal modular neural network (SORMNN) is proposed in the present study, which imitates the modular structure with inter-module connections observed in human brains. The inter module connections in SORMNN are built by inputting the output of each subnetwork to other subnetworks. All subnetworks work in parallel to process the allocated features, and the structure of each subnetwork is designed to be self-organized by using a growing and pruning algorithm based on the contribution of hidden neurons. An improved Levenberg-Marquardt (LM) algorithm using a sliding window is conducted to update the parameters of SORMNN, which makes SORMNN available for solving online problems. To validate the effectiveness of the proposed model, SORMNN is tested on chaotic benchmark time series prediction, four UCI benchmark problems and a practical problem for biochemical oxygen demand prediction in wastewater treatment process. Experimental results demonstrate that SORMNN exhibits both a higher training accuracy and a better generalization ability for nonlinear system modeling than other modular neural networks, and the inter-module connections have a positive effect on the superior performance of the proposed model and can make the network structure compact. (c) 2020 Elsevier B.V. All rights reserved.

关键词:

Inter-module connection Self-organization Nonlinear system modeling Reciprocal modular neural network

作者机构:

  • [ 1 ] [Li, Wenjing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Junkai]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Wenjing]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Meng]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Junkai]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Wenjing]Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 10 ] [Li, Meng]Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 11 ] [Zhang, Junkai]Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 12 ] [Qiao, Junfei]Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li, Wenjing]100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2020

卷: 411

页码: 327-339

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:688/4960465
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司