• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) (学者:韩红桂) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

A novel growing-and-pruning (GP) approach is proposed, which optimizes the structure of a fuzzy neural network (FNN). This GP-FNN is based on radial basis function neurons, which have center and width vectors. The structure-learning phase and the parameter-training phase are performed concurrently. The structure-learning approach relies on the sensitivity analysis of the output. A set of fuzzy rules can be inserted or reduced during the learning process. The parameter-training algorithm is implemented using a supervised gradient decent method. The convergence of the GP-FNN-learning process is also discussed in this paper. The proposed method effectively generates a fuzzy neural model with a highly accurate and compact structure. Simulation results demonstrate that the proposed GP-FNN has a self-organizing ability, which can determine the structure and parameters of the FNN automatically. The algorithm performs better than some other existing self-organizing FNN algorithms.

关键词:

growing-and-pruning algorithm (GP) sensitivity analysis (SA) Fuzzy neural network (FNN)

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Honggui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON FUZZY SYSTEMS

ISSN: 1063-6706

年份: 2010

期: 6

卷: 18

页码: 1129-1143

1 1 . 9 0 0

JCR@2022

ESI学科: ENGINEERING;

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 137

SCOPUS被引频次: 169

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:312/4970444
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司