• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xue, Liugen (Xue, Liugen.) (学者:薛留根)

收录:

Scopus SCIE

摘要:

In this article, a naive empirical likelihood ratio is constructed for a non-parametric regression model with clustered data, by combining the empirical likelihood method and local polynomial fitting. The maximum empirical likelihood estimates for the regression functions and their derivatives are obtained. The asymptotic distributions for the proposed ratio and estimators are established. A bias-corrected empirical likelihood approach to inference for the parameters of interest is developed, and the residual-adjusted empirical log-likelihood ratio is shown to be asymptotically chi-squared. These results can be used to construct a class of approximate pointwise confidence intervals and simultaneous bands for the regression functions and their derivatives. Owing to our bias correction for the empirical likelihood ratio, the accuracy of the obtained confidence region is not only improved, but also a data-driven algorithm can be used for selecting an optimal bandwidth to estimate the regression functions and their derivatives. A simulation study is conducted to compare the empirical likelihood method with the normal approximation-based method in terms of coverage accuracies and average widths of the confidence intervals/bands. An application of this method is illustrated using a real data set.

关键词:

bias correction confidence band empirical likelihood local polynomial fitting non-parametric regression model normal approximation

作者机构:

  • [ 1 ] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • 薛留根

    [Xue, Liugen]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SCANDINAVIAN JOURNAL OF STATISTICS

ISSN: 0303-6898

年份: 2010

期: 4

卷: 37

页码: 644-663

1 . 0 0 0

JCR@2022

ESI学科: MATHEMATICS;

JCR分区:3

中科院分区:3

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:220/3766387
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司