• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Liang (Wang, Liang.) | Yan, Biying (Yan, Biying.) | Duan, Fuqing (Duan, Fuqing.) | Lu, Ke (Lu, Ke.)

收录:

EI SCIE

摘要:

Geometric primitives contained in three-dimensional (3D) point clouds can provide the meaningful and concise abstraction of 3D data, which plays a vital role in improving 3D vision-based intelligent applications. However, how to efficiently and robustly extract multiple geometric primitives from point clouds is still a challenge, especially when multiple instances of multiple classes of geometric primitives are present. In this study, a novel energy minimisation-based algorithm for multi-class multi-instance geometric primitives extraction from the 3D point cloud is proposed. First, an improved sampling strategy is proposed to generate model hypotheses. Then, an improved strategy to establish the neighbourhood is proposed to help construct and optimise an energy function for points labelling. After that, hypotheses and parameters of models are refined. Iterate this process until the energy does not decrease. Finally, models of multi-class multi-instance geometric primitives are simultaneously and robustly extracted from the 3D point cloud. In comparison with the state-of-the-art methods, it can automatically determine the classes and numbers of geometric primitives in the 3D point cloud. Experimental results with synthetic and real data validate the proposed algorithm.

关键词:

3D point cloud 3D vision-based intelligent applications computational geometry computer vision energy minimisation feature extraction iterative methods minimisation multiclass multiinstance geometric primitives extraction power aware computing three-dimensional point clouds

作者机构:

  • [ 1 ] [Wang, Liang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Biying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Liang]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Yan, Biying]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Duan, Fuqing]Beijing Normal Univ, Coll Artificial Intelligence, Beijing 100875, Peoples R China
  • [ 6 ] [Lu, Ke]Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China

通讯作者信息:

  • [Wang, Liang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Wang, Liang]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET IMAGE PROCESSING

ISSN: 1751-9659

年份: 2020

期: 12

卷: 14

页码: 2660-2667

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:28

JCR分区:3

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:112/3602056
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司