• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Zhan (Wang, Zhan.) (学者:王湛) | Zhao, Shanshan (Zhao, Shanshan.) | Liu, Feng (Liu, Feng.) | Yang, Liying (Yang, Liying.) | Song, Yin (Song, Yin.) | Wang, Xiuyan (Wang, Xiuyan.) | Xi, Xuejie (Xi, Xuejie.)

收录:

EI Scopus SCIE

摘要:

In this paper, the influences of water rinsing conditions on the cumulative membrane permeate filtrate volume (CMPFV) were systematically investigated by a combination of orthogonal table and multivariate linear regression methods. The experiments were performed with a feed suspension from an SBR and deionized water in a laboratory-scale dead-end microfiltration test unit with a 0.1 mu m polyethersulfone (PES) microfiltration membrane respectively. The results showed that the resistance due to cake filtration dominated the flux decline under the conditions studied. Water rinsing process can restore the declined flux nearly to its initial value, but its ability is gradually reducing with the increase of the cleaning cycle, which is associated with the increasing accumulation of irreversible pollutants onto and into the membrane pores. The average contribution of water rinsing conditions on CMPFV were relative flux (38.3%)> detergent temperature (21.6%)> washing times (19.3%)> agitation speed (11.2%)>detergent volume (9.6%). Here, except for the relative flux, the others factors, such as detergent temperature, washing times, agitation speed and detergent volume had a positive contribution to CMPFV. In addition, the relationship between water rinsing conditions and CMPFV was analyzed and defined quantitatively for 4 cycles respectively and it can give good predictive results. (C) 2010 Elsevier B.V. All rights reserved.

关键词:

Multivariate linear regression methods Operating conditions Orthogonal table Quantitative evaluation SBR

作者机构:

  • [ 1 ] [Wang, Zhan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Shanshan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Feng]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Liying]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Song, Yin]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Xiuyan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Xi, Xuejie]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 王湛

    [Wang, Zhan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

DESALINATION

ISSN: 0011-9164

年份: 2010

期: 1-3

卷: 259

页码: 235-242

9 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2655/2946923
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司