收录:
摘要:
规则获取的增量式算法是数据挖掘领域的一个热点问题.基于粗糙集理论,从规则获取和优化两方面研究了基于遗传算法的增量式规则挖掘方法,它具有结构简单、搜索效率高、求解速度快等优点.通过研究决策表和决策规则系数,建立基于粗糙集表示和度量的知识,并且将遗传算法和规则挖掘算法相结合,建立了新的优化方法,提出了一种基于遗传算法的增量式规则挖掘的方法.在原有规则集的基础上进行规则和规则参数的增量式更新,避免了为更新规则而重新运行规则获取算法.试验结果表明,执行增量式GA的能够有效地获取最优规则.
关键词:
通讯作者信息:
电子邮件地址: