Indexed by:
Abstract:
In this paper, we study the quasi-neutral limit of compressible Euler-Poisson equations in plasma physics in the torus T(d). For well prepared initial data the convergence of solutions of compressible Euler-Poisson equations to the solutions of incompressible Euler equations is justified rigorously by an elaborate energy methods based on studies on an lambda-weighted Lyapunov-type functional. One main ingredient of establishing uniformly a priori estimates with respect to lambda is to use the curl-div decomposition of the gradient. (c) 2010 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
APPLIED MATHEMATICS AND COMPUTATION
ISSN: 0096-3003
Year: 2010
Issue: 11
Volume: 216
Page: 3408-3418
4 . 0 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: