• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang Haiyan (Jiang Haiyan.) | Dai Hongxing (Dai Hongxing.) (学者:戴洪兴) | Xia Yunsheng (Xia Yunsheng.) | He Hong (He Hong.) (学者:何洪)

收录:

EI Scopus SCIE PKU CSCD

摘要:

High-surface-area wormhole-like mesoporous SnO2 with a tetragonal rutile-type structure was fabricated adopting the hydrothermal strategy using poly(ethylene glycol) (PEG) as the template, tin chloride as the tin source, and urea as the precipitating agent. The effects of PEG with different molecular weights and its concentration, hydrothermal temperature, and calcination temperature on the pore structure and morphology of SnO2 were examined. The physical properties of these materials were characterized by X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscopy, selected-area electron diffraction, infrared spectroscopy, and ultraviolet-visible diffuse reflection spectroscopy. It is shown that the PEG template could be removed by washing, no significant impact of PEG molecular weight was observed on the surface area of the mesoporous SnO2 samples, but the factors such as PEG concentration, hydrothermal temperature, and calcination temperature exerted considerable influence on the pore structure of the SnO2 samples. After the hydrothermal treatment at 120 degrees C for 29 h with the molar ratio of PEG (with a molecular weight of 6 000 g/mol) to Sn of 0.01, a wormhole-like mesoporous SnO2 sample with a high surface area of 161 m(2)/g and an average pore size of 2.6 nm was generated. The SnO2 samples exhibited good behavior in UV-light absorption. These porous materials are suitable for use as catalysts, supports, and gas sensors.

关键词:

hydrothermal synthesis light absorption property poly(ethylene glycol) wormhole-like mesoporous tin dioxide

作者机构:

  • [ 1 ] [Jiang Haiyan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Dai Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Xia Yunsheng]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 4 ] [He Hong]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jiang Haiyan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHINESE JOURNAL OF CATALYSIS

ISSN: 0253-9837

年份: 2010

期: 3

卷: 31

页码: 295-301

1 6 . 5 0 0

JCR@2022

ESI学科: CHEMISTRY;

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1793/2919627
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司