• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jian (Yang, Jian.) | Zhong, Ning (Zhong, Ning.) | Liang, Peipeng (Liang, Peipeng.) | Wang, Jue (Wang, Jue.) | Yao, Yiyu (Yao, Yiyu.) (学者:姚一豫) | Lu, Shengfu (Lu, Shengfu.)

收录:

SSCI EI Scopus SCIE

摘要:

Brain activation detection is an important problem in fMRI data analysis. In this paper, we propose a data-driven activation detection method called neighborhood one-class SVM (NOC-SVM). Based on the probability distribution assumption of the one-class SVM algorithm and the neighborhood consistency hypothesis, NOC-SVM identifies a voxel as either an activated or non-activated voxel by a weighted distance between its near neighbors and a hyperplane in a high-dimensional kernel space. The proposed NOC-SVM are evaluated by using both synthetic and real datasets. On two synthetic datasets with different SNRs, NOC-SVM performs better than K-means and fuzzy K-means clustering and is comparable to POM. On a real fMRI dataset, NOC-SVM can discover activated regions similar to K-means and fuzzy K-means. These results show that the proposed algorithm is an effective activation detection method for fMRI data analysis. Furthermore, it is stabler than K-means and fuzzy K-means clustering. (C) 2008 Elsevier B.V. All rights reserved.

关键词:

Activation detection fMRI Data analysis Neighborhood consistency Clustering analysis One-class SVM

作者机构:

  • [ 1 ] [Yang, Jian]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 2 ] [Zhong, Ning]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 3 ] [Liang, Peipeng]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 4 ] [Yao, Yiyu]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 5 ] [Lu, Shengfu]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Jian]Chinese Acad Sci, Inst Automat, Key Lab Complex Syst & Intelligence Sci, Beijing 100190, Peoples R China
  • [ 7 ] [Wang, Jue]Chinese Acad Sci, Inst Automat, Key Lab Complex Syst & Intelligence Sci, Beijing 100190, Peoples R China
  • [ 8 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma 3710816, Japan
  • [ 9 ] [Yao, Yiyu]Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada

通讯作者信息:

  • [Yang, Jian]Beijing Univ Technol, Int WIC Inst, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

COGNITIVE SYSTEMS RESEARCH

ISSN: 2214-4366

年份: 2010

期: 1

卷: 11

页码: 16-24

3 . 9 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:353/4293969
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司