• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao Jun-Fei (Qiao Jun-Fei.) (学者:乔俊飞) | Han Hong-Gui (Han Hong-Gui.) (学者:韩红桂)

收录:

EI Scopus SCIE PubMed

摘要:

This paper presents a repair algorithm for the design of a Radial Basis Function (RBF) neural network. The proposed repair RBF (RRBF) algorithm starts from a single prototype randomly initialized in the feature space. The algorithm has two main phases: an architecture learning phase and a parameter adjustment phase. The architecture learning phase uses a repair strategy based on a sensitivity analysis (SA) of the network's output to judge when and where hidden nodes should be added to the network. New nodes are added to repair the architecture when the prototype does not meet the requirements. The parameter adjustment phase uses an adjustment strategy where the capabilities of the network are improved by modifying all the weights. The algorithm is applied to two application areas: approximating a non-linear function, and modeling the key parameter, chemical oxygen demand (COD) used in the waste water treatment process. The results of simulation show that the algorithm provides an efficient solution to both problems.

关键词:

Repair algorithm applications RBF neural network sensitivity analysis (SA)

作者机构:

  • [ 1 ] [Qiao Jun-Fei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Han Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF NEURAL SYSTEMS

ISSN: 0129-0657

年份: 2010

期: 1

卷: 20

页码: 63-74

8 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 44

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:784/3895623
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司