• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Xin-Yuan (Zhao, Xin-Yuan.) (学者:赵欣苑) | Sun, Defeng (Sun, Defeng.) | Toh, Kim-Chuan (Toh, Kim-Chuan.)

收录:

EI Scopus SCIE

摘要:

We consider a Newton-CG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive definiteness of the generalized Hessian of the objective function in these inner problems, a key property for ensuring the efficiency of using an inexact semismooth Newton-CG method to solve the inner problems, is equivalent to the constraint nondegeneracy of the corresponding dual problems. Numerical experiments on a variety of large-scale SDP problems with the matrix dimension n up to 4, 110 and the number of equality constraints m up to 2, 156, 544 show that the proposed method is very efficient. We are also able to solve the SDP problem fap36 (with n = 4, 110 and m = 1, 154, 467) in the Seventh DIMACS Implementation Challenge much more accurately than in previous attempts.

关键词:

semidefinite programming semismoothness iterative solver Newton method augmented Lagrangian

作者机构:

  • [ 1 ] [Zhao, Xin-Yuan]Beijing Univ Technol, Dept Appl Math, Beijing 100022, Peoples R China
  • [ 2 ] [Sun, Defeng]Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
  • [ 3 ] [Toh, Kim-Chuan]Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
  • [ 4 ] [Sun, Defeng]Natl Univ Singapore, Risk Management Inst, Singapore 117543, Singapore
  • [ 5 ] [Toh, Kim-Chuan]Singapore MIT Alliance, Singapore 117576, Singapore

通讯作者信息:

  • 赵欣苑

    [Zhao, Xin-Yuan]Beijing Univ Technol, Dept Appl Math, 100 Pingleyuan, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SIAM JOURNAL ON OPTIMIZATION

ISSN: 1052-6234

年份: 2010

期: 4

卷: 20

页码: 1737-1765

3 . 1 0 0

JCR@2022

ESI学科: MATHEMATICS;

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 248

SCOPUS被引频次: 247

ESI高被引论文在榜: 11 展开所有

  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-11
  • 2019-9
  • 2018-11

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:244/3908651
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司