• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Jialiang (Huang, Jialiang.) | Liu, Bo (Liu, Bo.) (学者:刘博) | Fu, Lihua (Fu, Lihua.)

收录:

EI Scopus SCIE

摘要:

Most existing person re-identification methods are mainly based on human part partition with horizontal stripes or human body semantic segmentation. In this paper, we propose a method called MDRS (Multiscale Discriminative network with Region Segmentation) to integrate multi-scale discriminative feature learning, horizontal stripe partition and semantic segmentation in a single framework, in which multiscale horizontal stripe partition and usage of both global and local features make the framework be robust to human pose variation, occlusion and background clutter, and semantic segmentation boosts the performance of person identification via shared multi-scale feature extraction. MDRS is trained end-to-end with a multi-task learning strategy that considers three tasks simultaneously: person identification, triplet prediction and pixel-wise semantic segmentation. Comprehensive experiments confirm that our approach exceeds many methods and robustly achieves excellent performances on mainstream evaluation datasets including Market-1501, DukeMTMC-reid and CUHK03. (C) 2020 Elsevier B.V. All rights reserved.

关键词:

Pattern recognition Supervised learning Semantic segmentation Person re-identification Multi-scale deep network

作者机构:

  • [ 1 ] [Huang, Jialiang]Beijing Univ Technol, Coll Comp Sci, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Liu, Bo]Beijing Univ Technol, Coll Comp Sci, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Fu, Lihua]Beijing Univ Technol, Coll Comp Sci, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Coll Comp Sci, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION LETTERS

ISSN: 0167-8655

年份: 2020

卷: 138

页码: 540-547

5 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:101/4301037
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司