收录:
摘要:
With regard to the improvement of efficiency, combustion stability, and emissions in a gasoline engine at idle condition, an experimental study aimed at improving engine idle performance through hydrogen addition was carried out on a 4-cylinder gasoline-fueled spark ignited (SI) engine. The engine was modified to be fueled with the mixture of gasoline and hydrogen injected into the intake ports simultaneously. A self-developed electronic control unit (DECU) was dedicatedly used to control the injection timings and injection durations of gasoline and hydrogen. Other parameters, such as spark timing and idle valve opening, were controlled by the original engine electronic control unit (OECU). Various hydrogen enrichment levels were selected to investigate the effect of hydrogen addition on engine speed fluctuation, thermal efficiency, combustion characteristics, cyclic variation and emissions under idle and stoichiometric conditions. The experimental results showed that thermal efficiency, combustion performance, NOx emissions are improved with the increase of hydrogen addition level. The HC and CO emissions first decrease with the increasing hydrogen enrichment level, but when hydrogen energy fraction exceeds 14.44%, it begins to increase again at idle and stoichiometric conditions. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址: