收录:
摘要:
Low-power CO2 laser direct-writing ablation was used to micromachine a microchannel on the polycarbonate substrate in this work. The influence of the process parameters (the laser power, the moving velocity of the laser beam and the scanning times) on the micromachining quality (the depth, the width and their aspect ratio) of the microchannel was experimentally studied. The depth and width of microchannel both increase with the increase of the laser power and the decrease of the moving velocity of the laser beam. When higher laser power and slower moving velocity were used, the polycarbonate surface bore more heat irradiated from the CO2 laser for longer time which results in the formation of deeper and wider molten pool, hence the ability to fabricate bigger microchannel. Because of the effect of the laser power on the depth and width of microchannels, higher aspect (depth/width) ratio could be achieved using slower moving velocity and higher laser power, and it would reach a steady state when the laser power increases to 9.0W possibly caused by the effect of laser power on the different directions of microchannel. The polycarbonate-polycarbonate chip was bonded with hot-press bonding technique. (C) 2008 Elsevier Ltd. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址: