收录:
摘要:
In this article, we study the issue of adaptive neural output-feedback controller design for a class of uncertain switched time-delay nonlinear systems with nonlower triangular structure. The prominent contribution of this article is that the delay-dependent stability criterion of nonswitched nonlinear systems is successfully extended to that of switched nonlower triangular nonlinear systems. The design algorithm is listed as follows. First, a switched state observer is designed such that the error dynamic system can be generated. Second, neural networks, adaptive backstepping technique, and variable separation method are, respectively, applied to construct a common controller for all subsystems, in which the Lyapunov-Krasovskii functionals are deliberately constructed such that the average dwell-time scheme can be employed to guarantee the stability and performance of the closed-loop system, despite the existence of time delays. Third, the stability analysis process confirms in detail that all the variables of the closed-loop system are semiglobally uniformly ultimately bounded. Finally, simulation study is given to show the validity of the proposed control approach.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN: 2162-237X
年份: 2020
期: 10
卷: 31
页码: 4084-4093
1 0 . 4 0 0
JCR@2022
ESI学科: COMPUTER SCIENCE;
ESI高被引阀值:34
JCR分区:1
归属院系: