• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Kui (Jiang, Kui.) | Wang, Zhongyuan (Wang, Zhongyuan.) | Yi, Peng (Yi, Peng.) | Wang, Guangcheng (Wang, Guangcheng.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Jiang, Junjun (Jiang, Junjun.)

收录:

SSCI EI Scopus SCIE

摘要:

Although tremendous strides have been recently made in face hallucination, exiting methods based on a single deep learning framework can hardly satisfactorily provide fine facial features from tiny faces under complex degradation. This article advocates an adaptive-threshold-based multi-model fusion network (ATMFN) for compressed face hallucination, which unifies different deep learning models to take advantages of their respective learning merits. First of all, we construct CNN-, GAN- and RNN-based underlying super-resolvers to produce candidate SR results. Further, the attention subnetwork is proposed to learn the individual fusion weight matrices capturing the most informative components of the candidate SR faces. Particularly, the hyper-parameters of the fusion matrices and the underlying networks are optimized together in an end-to-end manner to drive them for collaborative learning. Finally, a threshold-based fusion and reconstruction module is employed to exploit the candidates' complementarity and thus generate high-quality face images. Extensive experiments on benchmark face datasets and real-world samples show that our model outperforms the state-of-the-art SR methods in terms of quantitative indicators and visual effects. The code and configurations are released at https://github.com/kuihua/ATMFN.

关键词:

compressed face hallucination attention mechanism Threshold-based fusion network ensemble learning

作者机构:

  • [ 1 ] [Jiang, Kui]Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Peoples R China
  • [ 2 ] [Wang, Zhongyuan]Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Peoples R China
  • [ 3 ] [Yi, Peng]Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Peoples R China
  • [ 4 ] [Wang, Guangcheng]Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Peoples R China
  • [ 5 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Minist Educ,Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 6 ] [Jiang, Junjun]Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
  • [ 7 ] [Jiang, Junjun]Peng Cheng Lab, Shenzhen 518066, Peoples R China

通讯作者信息:

  • [Wang, Zhongyuan]Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON MULTIMEDIA

ISSN: 1520-9210

年份: 2020

期: 10

卷: 22

页码: 2734-2747

7 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 100

SCOPUS被引频次: 102

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:153/4516990
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司