• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Yunfeng (Lu, Yunfeng.) | Miao, Jun (Miao, Jun.) | Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Qiao, Yuanhua (Qiao, Yuanhua.) (学者:乔元华) | Jia, Ruixin (Jia, Ruixin.)

收录:

CPCI-S EI Scopus SCIE

摘要:

The region growing pulse coupled neural network (PCNN) algorithm is an efficient method for multi-value image segmentation. However, as a kind of PCNN models, choosing appropriate parameters are usually difficult. This paper brings forward a new approach which improves the region growing PCNN model by modifying the linking channel function and decreases the complexity of adjusting parameters. The region growing PCNN is not effective when processing the edge pixels between different regions because the edge pixels and central pixels are dealt with unfairly. In order to overcome this disadvantage, the proposed method processes the edge pixels by setting the edge pixels and central pixels to receive same linking input if they are in similar condition. Computer simulations prove it can process the edge pixels efficiently and obtain clear boundaries between different regions. (C) 2008 Elsevier Inc. All rights reserved.

关键词:

Image segmentation Region growing Pulse coupled neural network (PCNN) Simplified region growing PCNN (SRG-PCNN)

作者机构:

  • [ 1 ] [Lu, Yunfeng]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100022, Peoples R China
  • [ 2 ] [Duan, Lijuan]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100022, Peoples R China
  • [ 3 ] [Jia, Ruixin]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100022, Peoples R China
  • [ 4 ] [Miao, Jun]Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
  • [ 5 ] [Qiao, Yuanhua]Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China

通讯作者信息:

  • [Lu, Yunfeng]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100022, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED MATHEMATICS AND COMPUTATION

ISSN: 0096-3003

年份: 2008

期: 2

卷: 205

页码: 807-814

4 . 0 0 0

JCR@2022

ESI学科: MATHEMATICS;

JCR分区:2

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 38

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:884/3899148
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司