收录:
摘要:
基于性能势理论和等价Markov过程方法,研究了一类半Markov决策过程(SMDP)在参数化随机平稳策略下的仿真优化算法,并简要分析了算法的收敛性.通过SMDP的等价Markov过程,定义了一个一致化Markov链,然后根据该一致化Markov链的单个样本轨道来估计SMDP的平均代价性能指标关于策略参数的梯度,以寻找最优(或次优)策略.文中给出的算法是利用神经元网络来逼近参数化随机平稳策略,以节省计算机内存,避免了"维数灾"问题,适合于解决大状态空间系统的性能优化问题.最后给出了一个仿真实例来说明算法的应用.
关键词:
通讯作者信息:
电子邮件地址: