• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Wenan (Wu, Wenan.) | Yang, Yongtao (Yang, Yongtao.) | Zheng, Hong (Zheng, Hong.) (学者:郑宏)

收录:

EI Scopus SCIE

摘要:

Based on the three-variable Biot model, a numerical manifold model is presented to investigate dynamic responses of the fractured poroelasticity, especially the interaction between hydro-mechanical wave and fracture. The most flexible 3-node triangular mesh serves as the mathematical cover (MC) of the present model regardless of the problem types, shunning difficulties in qualified mesh generation. Continuous nodal gradients and Kroneckerdelta property are achieved for the global approximations by constructing the local approximations with a constrained and orthonormalized least square (CO-LS) scheme, presenting more precise effective stress fields and more convenience in implementing boundary conditions for both solid and fluid phases. Incorporating a stick-slip frictional contact model via the augmented Lagrange multiplier method, the present model is capable of accurately predicting the contact phenomenon in fractured poroelasticity. In terms of the energy balance condition, precision and stability of the proposed model in time integration are verified. Fractured porous media involved multiple cracks can be addressed more naturally and conveniently with the present model relative to extended finite element method (XFEM) and phantom node method (PNM). By solving a set of typical porous media problems, the superiority, accuracy and robustness of the present model are verified. (C) 2020 Elsevier Inc. All rights reserved.

关键词:

Fully dynamic (u-w-p) biot formulation Continuous nodal gradients Numerical manifold method Cracked porous media Wave propagation

作者机构:

  • [ 1 ] [Wu, Wenan]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
  • [ 2 ] [Yang, Yongtao]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
  • [ 3 ] [Zheng, Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Wenan]Univ Chinese Acad Sci, Beijing 100049, Peoples R China

通讯作者信息:

  • [Yang, Yongtao]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED MATHEMATICAL MODELLING

ISSN: 0307-904X

年份: 2020

卷: 86

页码: 225-258

5 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:375/3900819
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司