• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ohshima, Muneaki (Ohshima, Muneaki.) | Zhong, Ning (Zhong, Ning.) | Yao, Yiyu (Yao, Yiyu.) (学者:姚一豫) | Liu, Chunnian (Liu, Chunnian.)

收录:

EI Scopus SCIE

摘要:

Peculiarity rules are a new type of useful knowledge that can be discovered by searching the relevance among peculiar data. A main task in mining such knowledge is peculiarity identification. Previous methods for finding peculiar data focus on attribute values. By extending to record-level peculiarity, this paper investigates relational peculiarity-oriented mining. Peculiarity rules are mined, and more importantly explained, in a relational mining framework. Several experiments are carried out and the results show that relational peculiarity-oriented mining is effective.

关键词:

relational data mining peculiarity-oriented mining multi-database mining relational peculiarity rules identification of peculiar records

作者机构:

  • [ 1 ] Maebashi Inst Technol, Dept Informat Engn, Maebashi, Gunma 3710816, Japan
  • [ 2 ] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
  • [ 3 ] Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China

通讯作者信息:

  • 钟宁

    [Zhong, Ning]Maebashi Inst Technol, Dept Informat Engn, 460-1 Kamisadori Cho, Maebashi, Gunma 3710816, Japan

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

DATA MINING AND KNOWLEDGE DISCOVERY

ISSN: 1384-5810

年份: 2007

期: 2

卷: 15

页码: 249-273

4 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:1

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:582/4289744
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司