• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Hai-Jun (Jin, Hai-Jun.) | Liu, Chun-He (Liu, Chun-He.) | Lu, Zhe-Ming (Lu, Zhe-Ming.)

收录:

Scopus SCIE

摘要:

The semantic gap, between the low-level visual features and the high-level perceptive or semantic concepts, is a big hurdle in content-based image retrieval. To bridge the semantic gap, segmentation, machine-learning, clustering and classification techniques have been widely used in the preprocessing stages or during the relevance feedback. However, in these techniques, there are some problems such as long training or learning time, high computational complexity, some bad singular results occurring after feedback; and relearning required in the retrieval process for new queries. According to the fuzzy characteristic of the human's semantic knowledge, this paper presents a novel Fuzzy Semantic Relevance Matrix (FSRM) to bridge the gap between low-level features and semantic concepts. The updating of FSRM imitates the human's brain to search the similar images in the knowledge network and improve retrieval results continuously by memorizing the semantic concepts learned in previous relevance feedback processes. Experimental results demonstrate the effectiveness of the proposed retrieval scheme.

关键词:

semantic gap machine learning Fuzzy Semantic Relevance Matrix content-based image retrieval relevance feedback

作者机构:

  • [ 1 ] Harbin Inst Technol, Dept Automat Test & Control, Harbin 150001, Peoples R China
  • [ 2 ] Beijing Univ Technol, Beijing, Peoples R China
  • [ 3 ] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Peoples R China

通讯作者信息:

  • [Jin, Hai-Jun]Harbin Inst Technol, Dept Automat Test & Control, POB 339, Harbin 150001, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL

ISSN: 1349-4198

年份: 2007

期: 5

卷: 3

页码: 1131-1144

1 . 0 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:413/4968522
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司